What are the major chemical buffer systems of the body?
The bicarbonate, phosphate, and protein
The urinary and digestive
The bicarbonate, nucleic acids, and protein
The urinary and respiratory
The Correct Answer is A
A. The bicarbonate, phosphate, and protein: The major chemical buffer systems in the body are the bicarbonate buffer system, the phosphate buffer system, and the protein buffer system. These buffers help maintain pH balance in the blood and other fluids.
B. The urinary and digestive: The urinary and digestive systems are involved in excretion and digestion, not buffering.
C. The bicarbonate, nucleic acids, and protein: Nucleic acids are not major buffering systems in the body; the bicarbonate, phosphate, and protein systems are the primary ones.
D. The urinary and respiratory systems play roles in regulating acid-base balance through excretion and gas exchange but are not chemical buffer systems themselves.
Free Nursing Test Bank
- Free Pharmacology Quiz 1
- Free Medical-Surgical Quiz 2
- Free Fundamentals Quiz 3
- Free Maternal-Newborn Quiz 4
- Free Anatomy and Physiology Quiz 5
- Free Obstetrics and Pediatrics Quiz 6
- Free Fluid and Electrolytes Quiz 7
- Free Community Health Quiz 8
- Free Promoting Health across the Lifespan Quiz 9
- Free Multidimensional Care Quiz 10
View Related questions
Correct Answer is D
Explanation
A. Minerals are absorbed directly into the bloodstream, not through lacteals.
B. Glucose is absorbed directly into the bloodstream through capillaries, not through lacteals.
C. Amino acids are absorbed into the bloodstream through capillaries, not through lacteals.
D. Triglycerides are absorbed by the lacteals in the small intestine. Lacteals are lymphatic vessels that transport absorbed lipids (including triglycerides) from the digestive tract.
Correct Answer is A
Explanation
A. Diuretics increase urine output by inhibiting the reabsorption of water and sodium in the kidneys, which leads to increased water loss. This action is opposite to water conservation, making this the correct answer.
B. The counter current exchange system in the kidneys helps conserve water by maintaining a high osmolarity in the medulla, which facilitates the reabsorption of water in the collecting ducts. This system contributes to water conservation.
C. The collecting duct plays a crucial role in water reabsorption. Antidiuretic hormone (ADH) increases the permeability of the collecting duct to water, allowing more water to be reabsorbed back into the bloodstream, contributing to water conservation.
D. The counter current multiplier is a mechanism in the loop of Henle that creates a concentration gradient in the kidney medulla, which is essential for water reabsorption in the collecting ducts. It contributes to water conservation